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ABSTRACT

An algorithm is described for solving large-scale nonlinear
programs whose objective and constraint functions are smooth and con-
tinuously differentiable. The algorithm is of the augmented Lagrangian
type, involving a sequence of sparse, linearly constrained subproblems
whose objective functions include a modified Lagrangian term and a modified
penalty function.

The algorithm has been implemented in a general purpose Fortran
code called MINOS/AUGMENTED. The system is intended for use on problems
whose Jacobian matrix is sparse. (Such problems usually include a large
set of purely linear constraints.) The bulk of the data may be assembled

using a standard linear-programming matrix generator. Function and gradient

values for all nonlinear terms are supplied by two user-written subroutines.
Some aspects of the implementation are described in detail, and

computational results are given for some nontrivial test problems.

Assuming convergence occurs, the work involved is comparable to the

solution of a moderate number of linear programs of similar size.




1. INTRODUCTION
The work reported here was prompted by consideration of various ways
to extend the linearly constrained optimization code MINOS (Murtagh and
Saunders [13]) to include the capability of solving nonlinearly constrained
protlems. In particular we are concerned with large, sparse problems, in the
sense that each variable is associated with relatively few constraints.
Ignoring sparsity for the moment, consider the model problem

minimize fo(i)
(1.1)

subject to £(x) =‘9, £ <x<u

where the functions of x are assumed to be twice differentiable with
bounded Hessians. For this problem the algorithm discussed here would solve
a sequence of linearly constrained subproblems of the form

min LGxx A0 = £ - A(E ~ D) +30(E - HT(E - D (1.2a)

s.t. £=0, 2<x<u (1.2b)

where f is a linear approximation to f£(x) at some point X - (Thus
i = £k + Jk(§ - Ek) where fk and Jk are the constraint vector and
Jacobian matrix evaluated at Ek.) With p = 0, subproblem (1.2) corresponds
to that used by Robinson [20]. The same subproblem (with p = 0) 1s used
in Phase 2 of Rosen's algorithm [21].

The expression (l.2a) will be called a modified augmented Lagrangian.

When and A, are taken to be the solution and corresponding Lagrange

X K

multipliers for the previous subproblem, Robinson has shown for the case

1




» = 0 that the sequence (X )V will converge quadratically to a solu-

k' k

tion of the original proulem (l.1) as long as the initial pair is

(x5034)
sufficiently close to that solution. A case for which convergence can be
expected is when the modified Lagrangian L(., ik’ Ak’ 0) 1is convex. Since
this is not always true, the penalty term involving o 1is included here

to ensure that the Hessian of L(x, X Ak‘ p) 1is positive definite within
an approprilate subspace. It also inhibits large discrepancies between f
and i, thereby discouraging large changes in x 1in each subproblem if

the nonlinearities are such that the linearized constraints have little
meaning far from the point of linearization. As always, the intention is

to allow convergence from a wider range of starting points. Use of (1.2)
represents an alternative to Phase 1 of Rosen's algorithm {21] in which
(1.2a) is replaced by fo(i) + % pﬁ?ﬁ and the linearized constraints

f =0 are deleted from (1.2b).

The reason for choosing the modified penalty in (1.2a) rather than

T
of £ will become clear when sparsity is reintroduced.

N | =

the conventional

1.1. Subproblems

It has been argued in the past that the need to solve linearly
constrained subproblems is a drawback of methods such as Robinson's. How-
ever when projection (or reduced-gradient or variable-reduction) methods
are used we would take the view that linearly constrained subproblems are
actually easier to solve than the unconstrained subproblems encountered
in other Lagrangian- and penalty-based methods. (Certainly the implemen-

tation is more complex but with linear constraints present the optimization




usually takes place in a subspace of much smaller dimension.)

For a certain class of objective functions, the development of MINOS
has opened the way to solving large linearly constrained problems quite
efficiently. Hence for large versions of problem (1.1) involving a sparse
Jacobian matrix and many purely linear constraints, it is natural to apply
MINOS to the corresponding subproblems (1.2). The resulting extension of
MINOS is called MINOS/AUGMENTED and is documented in [14]. Our aim is to
describe the algorithm used and some details of its practical implementation,
and to discuss its performance on some nontrivial pr-blems.

Note that the Lagrangian and penalty terms in (1.2a) require continual
evaluation of the nonlinear constraint functions during the solution of (1.2).
In some cases this may be expensive. MINOS/AUGMENTED therefore allows the option
of setting Ak =0 and p =0 so that only f0(§) remains in (1.2a).

Some results obtained using this option are also reported.

The MINOS code for linearly constrained optimization is briefly
described in Section 2, and Section 3 discusses the method for handling
nonlinear constraints. Details of the computer implementation are described
in Section 4, and Sections 5 and 6 present some test problems and a discussion

of their solution.

2. BRIEF DESCRIPTION OF MINOS

MINOS solves problems expressed in the following standard form:

minimize £(x) + c'x +d'y 2.1)
X
subject to A = b (2.2)
pA
3
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where A is m by n, m < n, and the variables are partitioned into 'non-
linear" and "iinear" variables x and y respectively. (This standard form
is a slight generalization of the one normally used for linear programming
problems; it emphasizes the fact that nonlinearities in the objective function
often involve just a few of the variables x.)

For numerous practical reasons the last m columns of A form the
identity matrix I, and the last m components of y are the usual logical
("slack" or "surplus") variables.

MINOS uses an "active constraint' strategy, with the general con-
straints and some portion of the bound constraints being active at any given
time. Thus if =~ 1is partitioned as [B S N] where N 1is a set of '"non-

basic" columns, the active constraints are always of the form

B
(2.4)

J}N

4

The first part of this equation is equivalent to

while the second part reading X" EN indicates that the nonbasic vari-
ables xy are being held equal to one or other of their bounds. (The com-
ponents of RN come from £ or u as appropriate and the partition
[x., Xg» EN] is some permutation of (x,y].)

4
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The remaining columns of A are partitioned into "basic' and
"superbasic" sets B and S, such that the basis matrix B is square and
nonsingular. The corresponding basic and superbasic variables Xa and
Xg are free to vary between their bounds during the next iteration.

It can readily be shown that an optimal solution of the above form

exists for which the number of superbasic variables is less than or equal

to the number of nonlinear variables.

2.1. Some Aspects of the Algorithm Used in MINOS

The operators

A = N Z = I (2.5)

will be useful for descriptive purposes. The active constraints (2.4) are
of the form Ax = b, and Z happens to satisfy AZ = 0.

Under suitable conditions a feasible descent direction p may be

obtained from the equations

z'czpg = -2'g | p = Zp (2.6)

T
(see [6]). 1In particular, if the reduced gradient 2 g is nonzero, and if

the reduced Hessian ZTGZ is positive definite (or if any positive definite

matrix is used in place of ZTGZ), then the point x+ ap lies on the
active constraints and some scalar a > 0 exists for which the objective

function has a lower value than at the point X.




Other matrices 7 exist satisfving AZ = 0, but the form chosen
above, together with a sparse LU factorization of B, allows efficient

T
computation of the products Z g and Zp (Neither B nor 4 is

b Pgr
A . - . 1. . . . .
computed.) A positive-definite approximation to Z GZ 1is maintained in
T
the form R R where R 1is upper triangular. Quasi-Newton updates to R
lead to superlinear convergence.
Let the gradient of the objective function (Z.1) be the vector
( )T If satisfies
= . l
] By 8¢ By J atis

T 5
Bl-—_gB . (2.7

it is easily seen that the reduced gradient is

T T )

Z'g = 8g " S = . (2.8)
Hence in linear programming terminology the reduced gradient is obtained by

"pricing" the superbasic columns S. This is a cheap operation once

has been computed.

Likewise for P we have RTRES = —Z?& and then

-1
Py -B SES
p= Pg Zpg = Pg , (2.9)
Py 0

so most of the work lies in solving BBB = 'SEs' (The value Py = 0 indi-
cates that no change will be made to the current nonbasic variables. As
long as the reduced gradient ZTg is nonzero, only the variables in [B §]

6




are optimized. If any such variables encounter an upper or lower bound
they are moved into N and the partition [B S] 1is suitablv redefined.)
T
Note that if the reduced gradient does prove to be zero (Z g = 0)

the reduced objective has reached its optimal value. If we compute

1%

=8y NI~ (i.e. the usual pricing of nonbasic columns) we then have

B'r T EB

T
S a = 8g (2.10)
T

_N I 1 EN

so that nm and o are exact Lagrange multipliers for the current active

constraints. The components of ¢ indicate whether any nonbasic variables
should be released from their bounds. If so, one or more are moved from N
into S and optimization continues for the new set [B S}. 1If not, an
optimum has been obtained for the original problem.

In practice, optimization for each [B S] will be curtailed when
ZT§~ is sufficiently small, rather than zero. In this case T will be
just an approximation to the Lagrange multipliers for the general constraints.
The accuracy of n will depend on the size of I|Z?§H and on the condition

number of the current basis B.

2.2. Key Points

The algorithm implemented in MINOS provides a natural extension of
linear programming technology to problems whose objective function is non-

linear. If the number of nonlinear variables is moderate (or more precisely,

f— - - . C e e e e ——p— ¥ e o~ - e e e — C ot mta o




if the number of superbasic variables and hence the dimension of R is
moderate) then the work per iteration is not substantially greater than for

one iteration of the revised simplex method on the same data

]
%

~
|'<

Here we assume that the cost of gvaluating the objective function
and its gradient is moderate compared to manipulation of a sparse factori-
zation of the basis matrix B. At the same time it is important that the
step-size a be determined efficiently. The line-search procedure used
in MINOS is that of Gill, Murray et al. ([7]), which allows the user to
control the accuracy of the search by means of a parameter ETA, where
0.0 < ETA < 1.0. Even with a relatively accurate search (e.g. ETA = 0.01)
the number of function and gradient evaluations required is typically very
few (e.g. 1, 2 or 3 per search). This is increasingly beneficial for the
algorithm discussed next, where the objective function is modified to

include an arbitrary number of uonlinear functions.

3. EXTENSION TO NONLINEAR CONSTRAINTS

3.1. Statement of the Problem

It is assumed that the nonlinearly constrained problem can be

expressed in the following standard form:




T

minimize fO(x) + cix +d'y (3.1)
subject to f(x) + Alz = El (m1 rows) (3.2)
Ayx + Agy = 92 (m2 rows) (3.3)
g < 2 l<u m=m, +m (3.4)

=Ly Jl-- 1 2 )

1 M, T
where  f(x) = [f7(x), ... , f (5)] . The first n variables x are
again called "monlinear va;iables." They occur nonlinearly in either the

objective function or the first m, constraints. There may be purely

linear constraints, given by (3.3). As before, a full set of slack variables
is included as the last m components of the "linear variables" 1y, so

that general equality and inequality constraints can be accommodated in (3.2)
and (3.3) by means of suitable bounds in (3.4).

We shall assume that the functions fi(é) are twice continuously
differentiable with gradients gi(z) and bounded Hessians Gi(g), i=20,1,..., m, .
We shall also assume that the 1lst and 2nd order Kuhn-Tucker conditions hold
for a local minimum x* with corresponding A%,

The solution process consists of a sequence of "major iterations "

each one involving a linearization of the nonlinear constraints at some

point Xpes corresponding to a first-order Taylor's series approximation:

fi(ﬁ) = fi(gk) + 51(5k)T(§ -x) + oll x - ’—‘k”z

We thus define

£x) = £0g) + Ix) (x - x) »

or

f=£ +3(x-x), (3.5)

9
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where J(x) 1is the (ml X nl) Jacobian matrix whese ij-th element is

3f1/3xj. We then see that

f£-f=(-£) -3 &x-x) (3.6)

consists of the higher order (''monlinear"”) terms in the Tavlor's expansion

of f(x) about the point X -

3.2. The Linearized Subproblem

At the kth major iteration the following linearly constrained sub-

problem is solved:

minimize L(g,l,gk,&k,p) = fo(ﬁ) + Eiﬁ + Q?Z - AE(E;—E) + % O(ff'i)T(ffﬂé) (3.7)
X3

subject to f+ Alz = El s (3.8)
A2§ + A3X = 22 s (3.9)
X
L < {u. (3.10)
-_—— X —_——
The derivative of the objective function with respect to x is
oL 0 T p

Cyli g_(_X_,xk,Ak.p) =g (x) +c -~ J-30) [Ak -p(f -~ D)) . (3.11)

We see that the nonlinearities in L involve x but not y. (In contrast the
normal penalty function would involve the constraint violation

f + Alz - El in place of f - i.) This represents a vital advantage of

the modified augmented Lagrangian (3.7), since it means that each linearized
subproblem has the same number of nonlinear variables as the original

10




problem. The dimension of the reduced Hessian for the subproblem is there-
fore bounded in the same way as for the original problem, i.e., by the
dimension of x (cf. Theorem 1 of [13]).

The use of a penalty term to ensure the augmented Lagrangian
maintains a positive-definite Hessian in the appropriate subspace was
first suggested by Arrow and Solow [2] and adopted later by, among others,
Hestenes [10] and Powell [16] in theiﬁ sequential unconstrained procedures,

and by Sargent and Murtagh [23] in conjunction with their "variable-metric

projection" algorithm involving a sequence of linearized constraints. The
modified penalty term has not been used elsewhere since no distinction has
been made previously between linear and nonlinear variables. Note that the
modified penalty is identical to the conventional penalty in the subspace

defined by the linearized constraints.

3.3. Choice of Ak

The choice Ak =0, p =0 corresponds to simple sequential lineari-~

zation of the nonlinear constraints with no additional terms to fo(g) in
the objective function. We shall call this the 'Newton strategy,' although
it should not be confused with applying Newton's method to the Kuhn-Tucker
equations for a solution of (3.1)-(3.4).

Ideally, X should be as close as possible to A*, but of course

k

the optimal multipliers are normally unknown. The simplest choice is

Ak = )\, the multipliers corresponding to linearized constraints at the

solution of the previous subproblem. As we shall see, this choice 1is the

best of several alternatives. For convenience suppose there are no linear

~

constraints, so that A = 71 is the solution of B?l = By at the end of

the previous major iteration. We know that n also satisfies STl = &g

11




(at least to within the convergence tolerunce used for the subprobjem).

We thus have

and it is immaterial which variables are in B and which are in §S. Now
g 1s zero for all slack variables and it follows immediately that

ii = 0 if the ith linearized constraint is inactive. The choice lk = 4
therefore ensures that an apparently inactive nonlinear constraint will
be excluded from the Lagrangian term li(f»— é) in the next subproblem.
This is a desirable property.

It may seem that a better approximation to X* could be obtained
by evaluating the new Jacobian J(x) which is required anyway for the
next subproblem. Let the resulting "new" [B S] be denoted by [B §].
One possibility is to define Ak as the solution of the least-squares
problem

B 8

S Bs

where the rhs is still the "old" gradient vector for the previous augmented
Lagrangian. However, this least-squares problem would be very expensive
to solve for large problems. Furthermore it is not guaranteed that Ay = 0

would result where desired.

A cheaper alternative would be to solve ﬁTi = &y and take

Ak = 7, but then Ai

1f the corresponding slack variable happened to be basic and not superbasic.

= 0 for inactive constraints would be assured only

If the new B 1s to be used, the method of Sargent and Murtagh [23]

shows that

12
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would produce the correct multipliers for the solution of the new subproblem
if the original objective and constraints were quadratic and GL was an
adequate approximate to the Hessian of the new Lagrangian. (See equat@on
(12) in [13].) However, this again is not a practical alternative for

large problems.

3.4. Choice of o
It is well known that x* need not be a local minimum of the
Lagrangian function (with p = 0). If we assume that J(E*) is of full
rank, then A* exists and is such that
T

L)) = £ + c'x+d'y - ATIE+ Ay - by

is stationary at (x*,i*), but L(x*,A*) may well display negative
curvature in x at x¥*.
The most that can be said [26] 1is that, if we consider the con-

straints satisfied at x* as equalities and ignore the inactive ones, then

a necessary (sufficient) condition that x* 1s a local minimum is

Z(x*) T Z—L (x*,2%) = 0
= (x*,)%) = 0
and
2

ZQ*)T 9_15. (x*, A%) Z (x*)

Ix

is positive semidefinite (positive definite), where Z(x*) is as defined

13




in equation (2.5) using J(x*) in the appropriate part of A.

Thus if we restrict our search to "he linearly constrained sub-
space defined by Z(x*) we do indeed seek a minimum of the Lagrangian, and
we may expect that when Xy is sufficiently close to x* for J(Ek)
to be close to J(x*) we may minimize (3.7) with » = 0. This is confirmed
by Robinson's theorem on quadratic coﬁvergence [20].

Difficulty arises when % is far removed from x*, since the
linearized constraints may define a subspace where perhaps a saddle-point
would be closer to x* than a minimum would be. Successive minima of
(3.7)-(3.10) with p = 0 may therefore fail to converge to x*. The
addition of a penalty term p[ﬁfilT[£~£] imposes the correct curvature
properties on (3.7) for a sufficiently large p > O.

For general nonconvex problems it is not practical to determine

L a priori what the appropriate order of magnitude o should be (indeed

p = 0 1is often adequate even in the nonconvex case). The more important

consideration is when to reduce p to zero, for we know that there is a

radius of convergence around (x*,A*) within which Robinson's theorem

holds for p = 0, and we can then expect a quadratic rate of convergence.
Two parameters we can monitor at the solution X to each linearized

subproblem are the constraint violation or 'row error',
HE(x) + Ay - bl = £ - £Gx)

and the change in multiplier estimates, || A - A . The question that
arises is whether these can be used to provide adequate measures of con-
vergence toward x¥*,

For simplicity, comsider the equality-constrained problem

14




P.: minimize fo(i)

subject to f(x) =0 -~

where the functions of x are twice continually differentiable with
bounded Hessians. We shall assume that at some point x* the Jacobian
J(f*) is of full rank, there exists a A*  such that 3f0/85_= J(E*)Ti*,
and the reduced Hessian Z(Ef)T BZL(Ef,Af)/aEZ Z(z}) is positive
definite (i.e the sufficiency conditions are satisfied for x* to be a

local optimum).

Theorem 1.

Let (Ek’ ik) be an approximate solution to PO and let

(x,A) be a solution to the linearized subproblem

S, : minimize £0(x) - AL(E - £) + 2o -0TE- D

subject to f(x,x,) =0

=

>

1f and f(x) = £,» then (x,}) 1is also a solution to the

-lk=_€-l
perturbed problem

P : minimize £O(x) + (g, + e’ (£ - £)

subject to f(x) = £

for sufficiently small & and £y
15
"ﬁ—' v g pe— - ) )
3} — -, ;M




Proof. If (i,i) is a solution of S1 we must have f = 0 and
0,” - T b T p T
g (x) - (J - Jk) lk + p(J - Jk) (f - £f) = Jki

where Jk is the Jacobian at §k but J, f and f are evaluated at x.
R T
Adding (J - Jk) A to both sides and inserting the expressions for ., and

£, gives
0,° - T - T _ T
5(5)+(J-Jk)31+o(J-Jk)£2-Jl

which shows that (x,A) also satisfies the conditions for a stationary

point of Pl. Now it can be shown that the Hessians for the Lagrangian

- T -
functions of Sl and P1 differ only by the amount p(J - Jk) J - Jk)
at the solution of Pl’ which is of order pHA§ﬂ§ where Ax, = X - X .

Hence for sufficiently small and Aﬁk, if the reduced Hessian of

£ &5

S1 is positive definite at x then by continuity the reduced Hessian of

Pl will also be positive definite, thus satisfying the sufficiency con-

ditions for a local minimum of P1 at Xx. o

It is of interest to examine the corresponding result for the

conventional penalty term.

Theorem 2, Let (Ek’lk) be an approximate solution to PO and let

(x,A) be a solution to the linearized subproblem

16




0 T . 1
S,: nminimize f (x) - lk(i -£f) + 2 of £
subject to iﬁﬁ,zk) =0,

If A - £

MY

perturbed problem

and f(x) = £,» then (x,)) 1s also a solution to the

P2: minimize fo(l) + Ei(i - i) + pgzi
subject to  f(x) = g, -
Proof. Analogous to the proof of Theorem 1. o

Again it follows that 1if g and g, are sufficiently small,
(ézi) will be within the radius of convergence of Robinson's theorem and o
can safely be reduced to zero. A point of interest is that problem P1
appears to be less sensitive than P2 to deviations from its optimum.
Thus, let Ax be an arbitrary small change to the solution i_ of Pl'

The objective function for P1 then differs from the true objective

£0(x) by an amount

.-

61 - (.5_1 + 952) (£ = £) ’

16,0 < (Hedl +ollell) o] ax| 2
1" - -1 =2 - *

For P, the analogous deviation is

2
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Since &, 1is of order || x|l while §, 1is of order | xIl, it

1 2

appears that the modified penalty term in S1 has a theoretical advantage

over the conventional penalty term of 52.

3.5. Summary of Procedure

The cycle of major iterations can be described as follows:
Step 0. Set k = 0. Choose some initial estimates Xq 10 and specify

a penalty parameter o > 0 and a convergence tolerance o > 0.
Step 1. (a) Given X Ak and p, solve the linearly constrained problem
(3.7)-(3.10) to obtain new quantities X410 el and g(3k+1).

(b) Solve B?E = gB(x ).

~k+1

w
1]
(s
>
]

(c)

the first my components of .
Step 2. (a) Test X4l for convergence. If optimal, exit.

(®) If G ) FAY L b QI ) Ce  and

Il A

M1~ ik” /@ + |l —>‘-k+1“ ) {e_, then set p = 0.

(¢) Relinearize the constraints at LT

(d) Set k = k+1 and repeat from Step 1.
This procedure would not be complete without an algorithm for increasing the
penalty parameter in certain circumstances. In Step 2(b) of the present imple-
mentation, we raise p by some factor if the relative change in Ak proves

to be very large.

18
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4, COMPUTER IMPLEMENTATION

4.1. Sparse Matrices

Using equation (3.5), the linearized constraints (3.8) can be

expressed in the form:

NE Ay =y r X - g (4.1

where £k = fﬁgk). The terms on the right-hand side of (4.1) are constant and
become part of "b", the current right-hand side. The set of linear constraints

"Ax = b"” for each major iteration is thus of the form:

[
>
| %
o
+
[
3
1
[as}

= . (4.2)
2 _

The major implication of A being large and sparse is that efficient
methods are available for forming and updating an LU factorization of the
basis matrix B (cf. equation (2.4)). (In particular, a "bump and spike"
algerithm [9] is used to preserve sparsity at each refactorization of B.
This occurs at the start of every relinearization and occasionally thereafter
as necessary. At each intervening change of basis the LU factors are updated
using the scheme described by Saunders [24] to preserve both sparseness and

numerical stability.)

4.2. Infeasible Subproblems

One of the difficulties with sequential linearization is that some
of the linearized subproblems may prove to be infeasible. In particular,

the point (Ek’xk) used to define subproblem k is usually not a feasible
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point for the subproblem. However 1t will tvpicaliv be tegsitle tor s
previous subproblem (and possibly optimal) . THis can be usced 1o ady iiitaa
in the marner suggested by Powell [18]. Thus wo write the lincarized on-

straints (4.1) in the form

where yq is a perturbation to the right-hand side. 1t (§¥'ik) I thie
final feasible point from subproblem k - 1, we can show that it will aiso

be feasible with respect to the new linearized constraints (4.2 i =1

and q = £(§k) - Eﬁik’ﬁk—l)' (Thus g is the value of 1 - f at the end
of the previous major iteration.)

In MINOS/AUGMENTED the right-hand side of (4.3) is initialized with
vy = 0. If the subproblem proves to be infeasible we add % q to the right-
hand side and continue the solution process. If there is still no feasible
solution we add % q, %—g' and so on. This simulates the sequence of values

= %, %, %, ... tending to 1 as desired.

If the above procedure fails after 10 modifications, or if it is
not applicable (e.g. when k = 0 or the previous subproblem was infeasible),
a new linearization is requested as long as at least one minor iteration
has been performed. Otherwise the algorithm is terminated with the assump-
tion that the original problem itself is infeasible.

In [21], Rosen guards against infeasible subproblems by linearizing
perhaps only some of the nonlinear constraints, namely those that have been
active or reasonably close to active at any earlier stage. This alternative

could be implemented in MINOS/AUGMENTED by adjusting the bounds on the slack

variables associated with the linearized constraints.

20




4.3. User Options

Various implementation options are discussed in the following
sections. Capitalized keywords at the head of each section illust-ate
the input data needed to select any particular option. Fuller details

are given in the user's manual [14].

4.4, Subroutines CALCFG and CALCON

VERIFY OBJECTIVE GRADIENT

VERIFY CONSTRAINT GRADIENTS

As in the linearly constrained version of MINOS, a user-written
subroutine CALCFG is required to calculate the objective function fogf)
and its gradient. The Lagrangian terms in (3.7) are calculated internally.

The user also supplies a subroutine CALCON to define the constraint
vector f(x) and the current Jacobian J(x). The nonzeros in J are
returned column-wise in an output vector and must be in the same order
as the corresponding entries in the MPS file (see below).

Subroutine CALCON is called every time the constraints are linearized.
Except for Newton's method it is also called one or more times each line-
search to allow computation of (3.7) and (3.11). The expense of evaluating
the constraints and their gradients should therefore be taken into account
when specifying the linesearch accuracy.

Note that every function and Jacobian element is computed in every
call to CALCON. Although some of these values may effectively be wasted
(e.g. 1if some of the constraints are a long way from being active), the
resulting simplicity of the subroutine from the user's point of view cannot

be overemphasized.
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Since the programming of gradients is notoriouslyv prone to error,
the VERIFY option 1is an essential aid to the user. This requests a check
on the output from CALCFG and/or CALCON, using finite differences of fo(é)
or f(x) along the coordinate directions. The check is performed at the
first feasible point obtained (where feasibility is with respect to the
first linearized subproblem). This point will not satisfy the nonlinear
constraints in general, but at least it will satisfy the linear constraints
and the upper and lower bounds on x. Hence it is usually possible to
avold singularities in the nonlinear functions, both in the gradient check

and in subsequent iterations.

4.5, Jacobian Option

JACOBIAN = SPARSE or DENSE

The submatrices Al’ A2’ A3 and vectors 91, gz in equation (4.2)
are constant data and so may be entered using a standard MPS input file,
as in linear programming, whereby only the nonzero coefficients and their
row locations are entered columm-by-column. Since we envisage that the
Jacobian submatrix J will also be large and sparse we use the same
scheme for recording the row and column locations of the nonzeros. Thus
(with JACOBIAN = SPARSE) the sparsity pattern of J 1s entered as part
of the MPS file. The corresponding numerical values in the MPS file may
be genuine coefficients (if they are constant) or else dummy values,

such as zero. Each call to subroutine CALCON subsequently replaces all

dummy entries by their actual value at the current point Xx.
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0f course the intention here is to allow use of standard matrix
generators to specify as much of the constraint matrix as possible. Pin-
pointing the nonzeros of J by name rather than number has the usual

advantages, and in subroutine CALCON some code of the form

LJAC = LJAC + 1

G(LJAC) = ...

is usually adequate to define the next nonzero in a column of the Jacobian,
without explicit reference to any row or column numbers. Nevertheless,
the user is effectively required to give the sparsity pattern twice (in
the MPS file and in CALCON), and it is essential that mismatches be
avolded. At present the VERIFY option is the only aid to detecting
incompatibility.

In the interest of simplicity, the option JACOBIAN = DENSE allows
J to be treated as a dense matrix. 1In this case the MPS file need not
specify any elements of J, and subroutine CALCON can use assignment

statements of the form G(I,J) = ... to specify J by row and column

i3
number. The danger of mismatches is thereby eliminated, but the storage
requirements may be excessive for large problems. It may also give rise

to an unnecessarily large "bump" in the basis factorizations.

4.6, Partial Completion

COMPLETION = PARTIAL or FULL

"Partial completion" is a compromise between the two extremes of
relinearizing after each linesearch and solving each subproblem to high
accuracy ("full completion’).

23
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The idea of attaining only partial completion at each major iteration
can be accommodated effectively via the convergence tolerances. MINOS uses
relatively loose tolerances for minimizing the reduced objective, until it
appears that the optimal partition [B S N] has been identified. The
partial completion option is effected by terminating a major iteration at
this stage.

Otherwise for full completion the normal optimization procedure is
continued using tighter tolerances to measure the change in x, the size
of the reduced gradient U,ZQQU”Eﬂ), etc. This usually gives only small
changes in x and = without changing the partition [B S NJ.

An alternative means for achieving partial completion for early

major iterations is via the MINOR ITERATION limit (see Section 4.8).

4.7. Lagrangian Option, Penalty Parameter

Newton Strategy: LAGRANGIAN NO

PENALTY PARAMETER 0.0
With this option the constraint functions and gradients are evaluated only

once per major iteration.
Augmented Lagrangian: LAGRANGIAN YES
PENALTY PARAMETER o (p>0)

Here the constraints and Jacobian are evaluated as often as the objective.
Evaluation of the augmented Lagrangian and its gradient with p > 0 1is

negligibly more expensive than with p= 0 .

24




4.8, Convergence Conditions

MAJOR ITERATIONS 60
MINOR ITERATTONS 40
RADIUS OF CONVERGENCE € (= 1072)
ROW TOLERANCE €. (= 1079

Apart from terminating within each major iteration, we also need a

terminating condition for the cycle of major iterations (Step 3, Section 3.5).

The point (5k,xk) is assumed to be a solution to the nonlinearly
constrained problem (3.1)-(3.4) if both the following conditions are
satisfied:

1. (zk,xk) satisfies the nonlinear constraints (3.2) to within a pre-

defined error tolerance, i.e.

|fi(§k) + sff\lxk - gf_b;ll Le A+ g,y D, t=1,...,m

2. (Ek’zk) satisfies the first-order Kuhn-Tucker conditions for a

solution to the linearized problem.

The tolerance parameter € is specified by the user, and was

set equal to 10.-6

for most of the test problems described in the subsequent
sections.

If the "partial completion' option is used, then once these two
criteria are satisfied, a switch to "full completion'" is invoked to obtain

an accurate solution for the current subproblem, as well as for any possible

further linearizations.
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The errur tolerance Fc is used to define a radius of convergence
about (x*,%*) within which Robinson's theorem is assumed to hold. If
the row error defined above and the relative change in Lagrange multipliers
between successive subproblems are both less than t e in magnitude then
the penalty term is dropped (i.e. . 1is set to 0.0).

The MINOR ITERATION limit is used to terminate each linecarized sub-
problem when the number of linesearches becomes excessive. The limit of
40 was used in all the numerical experiments. A much small number would
result in more frequent use of expensive housekeeping operations such as

the refactorization of B in Step 3, Section 3.5. Similarly a much larger

number may be wasteful; if significant changes to x have occurred then

a new linearization is appropriate, while if there has been little progress
then updating the Lagrangian information gives some hope of more rapid
progress.

It must be noted that for some choices of 50, AO and p the
sequence of majo. iterations may not converge. The MAJOR ITERATION limit
provides a safeguard for such circumstances.

For a discussion of linearly constrained Lagrangian methods and
their drawbacks see Wright [26], pp. 137-147.

In the present implementation of MINOS/AUGMENTED the only recourse

would be to restart with a different initial x or a larger value for

the penalty parameter p (or both).




5. TEST PROBLEMS
Most of the text examples reported here appear in the published
literature. The last two examples are new and are described in detail.

They can be made arbitrarily large by increasing one parameter.

5.1. Colville No. 2

This well known problem is one of the more testing of the Colville
series of problems [3] and has been used frequently to compare different
algorithms [1], [8], {[20], [23]. It has a cubic objective function and 15
quadratic constraints. Even in this small problem the variables can be
partitioned into linear and nonlinear sets, of dimension 10 and 5
respectively.

a) Feasible starting point.

b) 1Infeasible starting point.

5.2. Colville No. 3

This problem has a quadratic objective function of five variables
and three quadratic constraints. It also has upper and lower bounds on
all the variables, and upper and lower limits on the constraints. These
can be accommodated effectively by using the BOUNDS and RANGES options
in the MPS file; the BOUNDS option allows variables to be nonbasic at
their upper or lower bound, and the RANGES option assigns both upper
and lower bounds to the slack variables assoclated with the constraints

(thus allowing the right-hand side to range between bounds).
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a) Feasible srarting point .

b) Infeasible starting point .

5.3. Colville No. 8
This is a typical process design problem, where some of the vari-
ables are determined by solving nonlinear equations. It has 3 independent

variables and 7 constraints.

5.4. Powell's Problem {17]

This has 5 variables and 3 constraints. Although small, this is a

good test problem as the nonlinearities in the constraints are quite

significant.
minimize exp(x1x2x3x4x5)
2 2 2 2 2 _
subject to x1 + x2 + x3 + x4 + x5 =10 ,
x2x3 - 5xl’x5 =0 ,
3 3
X3 + X, = -1

Starting point: (-2, 2, 2, -1, -1).
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5.5. Power Scheduling

This is a comparatively large test problem reported recently
by Biggs and Laughton [4], with 79 variables and 91 constraints (all non-
linear). It also has upper and lower bounds on some of the variables.
Although all the variables and constraints are nonlinear, the linearized
constraint matrix Jk (equation 4.3) 1s quite sparse with on averageua
little under 6 nonzero row entries per column. Treating it as a dense
matrix could result in a "bump" of 79 columns, which is clearly undesirable.
A number of minor discrepancies between Biggs and Laughton's paper and

the original statement of the problem [25] were resolved by using the

original data.

5.6. Launch Vehicle Design

This problem appears in Bracken and McCormick's book on nonlinear
programming applications [5] and also appears in [22]. There are 12 linear
constraints and 10 nonlinear constraints, and the Jacobian of the nonlinear
constraints is quite sparse (densityv 23%),yielding an overall matrix

density of 15%. All 25 variables are nonlinear.

5.7. Quartic with Quartic Constraints

This problem appears in Pierre and Lowe [15). Only a few terms
are quartic, the remainder being predominantly quadratic. It has 20

variables (all nonlinear) and 17 constraints, 13 of which are nonlinear.
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5.8. Dembo No. 7

This is one of Dembo's set of 8 Geometric Progr:ahing test
problems [28]; in particular, it required the most computation time in
Dembo's results. Other authors have reported difficulty with the
problem (Powell [29], Coope and Fletcher [27]). There are 16 variables
(all nonlinear) and 19 general constraints (11 of them nonlinecar).
The solution has a few primal and dual degeneracies, but it is essentially
at a vertex of the constraint space (i.e., a vertex of the final

linearization).

5.9. Wright No. 4 [26]

This is a highly nonlinear non-convex problem for which four local

minima have been determined.
2 2 3 4 4
minimize (xl 1" + (xl—xz) + (x2 x3) + (x3-x4) + (XA_XS)

2 3
subject to X, + X, + X3 = 2+ 32,

2
Xy - x3 + x4 = -2+ 2/2 ,

X =2 .

1%s
Starting points:

(a) (1,1,1.1,1)

() (2,2,2,2,2)

(¢) (-1,3,-1/2,-2,-3)

(@) (<1,2,1,-2,-2)

(e) (-2’-2)-2)—2s-2)
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Local optima:

x*(1) = (1.11663, 1.22044, 1.53779, 1.97277, 1.79110)T
x*(2) = (-2.79087, -3.00414, .205371, 3.87474, -.716623)T
x*(3) = (-1.27305, 2.41035, 1.19486, -.154236G, —1.57103)T
x*(4) = (-.703393, 2.63570, -.0963618, -1.79799, -2.84336)T

5.10. Wright No. 9 [26]

This is another highly nonlinear example.

minimize 10x1x& - 6x x2 + x x3 +9 sin(x5 - x3) + x.x

372 271

2 2 2 2 2
subject to XX, Fxg x4 <20,

x2x +x,x >-2 ,

v
w

2
X,X, + 10xlx5 2
Starting points:
(a) (1,1,1,1,1)

(b) (1.091, -3.174, 1.214, -1.614, 2.134)

Local optima:

x*(1) = (-.0814522, 3.69238, 2.48741, .377134, .173983)T

x*(2) = (1.47963, -2.63661, 1.05468, -1.61151, 2.67388)T

With the barrier trajectory algorithm, Wright [26] obtained convergence
to x*(1) from (a) and convergence to x*(2) from (b). Note that starting
point (b) was originally chosen to cause difficulty for the barrier

algorithm and other methods that retain feasibility throughout.
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5.11. Optimal Control

This problem investigates the optimal control of a spring, mass
and damper system. It is adapted from [19]. While it is acknowledged
that there may be simpler ways of solving the problem by taking
specific advantage of the nature of the constraints, it serves the present

purpose of providing a large,sparse test problem.

1 & 2
minimize f£(x,y,u) = 3 ) X,
t=0
\
subject to Xep1 = % + 0.2yt
2
yt+1 yt - 0.01yt - 0.004)(t + 0.2ut } t=0,..., T~1,
-0.2 < u_ €0.2
¥, 2 -1.0
Xy = 10, y =0, yg = 0.

Starting point: xt =0, yt =-1, t=1,..., T.
For the results below we set T = 100. There are thus 202 nonlinear
variables (xt, Yoo t =0,..., 100) and 100 linear variables

(ut, t =0,..., 99). There are also 100 quadratic constraints and 100
linear constraints. Note that the nonlinear constraints are very sparse,

with only 4 nonzeros per row.
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The solution is dominated to a large extent by the lower bound

on yt; the optimal Ye decreases with increasing t and remains at

-1.0 from t = 20 to t = 40, and then
positive and settles to 0.0 at t = 100.
x, can be calculated directly from the

The optimal value of the objective is !

5.12. Economic Growth Model (Manne [11]

This is a model for optimizing aggregate consumption over time.

increases again, goes slightly

The corresponding values of

linear constraint x =
t+1

Lxl{z/z = 1186.382.

)

X

t

+

0.

2y

The variables are Ct’ It and Kt which represent consumption, investment

and capital in time period t for t =1,..., T.
T
Utility function: maximize Y B log C
c t tt
t=1
Nonlinear constraints: ath > Ct + I , 1<t<T
2 t 2 t2
Li r trai :
near constraints Kl < Kt + I, 1<t«<T
gy < I
Bounds: K = +
1" It %
\
K, > I +Ky
Ct 2 C0
> l<t<T
It > I0
I, < (1.04)%1
, t — 0/
33
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Data: s = 0.95, b = 0.25, R VR
= = N Y = U \
CO 0.95, 10 0.0, ko 3
t T,
23 = 2 DY - = - 1- - .
N 2 except o /( )
1-h)t b
1 = 1(l+g)( where 1= (CO + IO)/i\0

The objective function (regarded as a minimand) and the nonlinear con-
straints are both convex and separable. The same is true of the preceding
optimal control problem. These examples should therefore be useful test

problems for more specialized convex programming algorithms.

For test purposes we have used T = 100, which gives a problem
with 200 general constraints and 300 variables. The optimal value of
the utility function is 9.287547. All general constraints are active
at the solution, and the first 74 upper bounds on It are also active.

It should be mentioned that specialized methods are known to
economists for solving this problem, with and without the upper bounds
("absorptive capacities") on the variables It' However in more practical
circumstances the model would be imbedded in a much larger modc! for
which an analytical solution is not known. If the larger model contains
no additional nonlinearities, the performance of MINOS/AUGMENTED should

degrade only in proportion to the problem size.
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. RESULTS AND DISCUSSION

MINOS/AUGMENTED is implemented in standard Fortran. Various
options can be selected at run-time by means of a SPECS file, and 'n
initial point X, can be specified by an INITIAL BOUNDS set in the file
containing the constraint data. The latter is defined in the well-known

MPS format used by commercial mathematical programming systems.

The following parameter values were used throughout:

LINESEARCH PARAMETER ETA 0.1 (moderately accurate search)

RADIUS OF CONVERGENCE = 0.01 (EC in Section 3.5)

-6
ROW TOLERANCE = 10 (Er in Section 4.7)

MINOR ITERATIONS LIMIT 40 (not active on small examples)

Run-times are reported below in order to allow comparison among various

algorithmic options.

6.1. Problems 5.1-5.8

These examples were solved on a CDC Cyber 70. In all cases con-
vergence was obtained with zero penalty parameter p. The results are
summarized in Table é.1. 1In general the partial completion option converged
more rapidly than full completion. However example 5.4 illustrates that
fewer major iterations are likely if subproblems are solved accurately
once the correct subspace has been identified. This was observed in
several other cases and is probably explained by the discussion of Ak
in Section 3.3. In terms of total run-time the Newton strategy was often

superior, but it failed to converge on problems 5.4 and 5.5. This deficier

becomes more prominent in the examples below.
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Problem 5.8 was run with two different minor-iteration limits
(3 and 40, which could have been 3 and 15 without altering the comparison).
The results illustrate that terminating major iterations earlv can some-

times help rather than hinder.

6.2. Problems 5.9-5.12

The results for these examples were obtained on an IBM 370/168
using the Fortran H Extended compiler with full optimization (OPT = 3).
Computation was performed in double precision, but the constraint data
were siored in single precision, including Jk in the linearization of

f(x). This limits the achievable constraint error to about 10_6, but

that is usually adequate in practice. Full completion was used throughout.

Problem 5.9 (Wright No. 4)

This highly nonlinear problem illustrates the difficulties discussed

in Section 3.4 when no penalty term is used. The Newton strategy and the
Lagrangian algorithm with P = 0 both gave rise to subproblems which
changed radically each major iteration.

The results using the Lagrangian algorithm with p = 10 and
p = 100 are shown in Table 6.2.

Infeasible subproblems were_encountered with starting point (e)
using the penalty parameter o = 10, but the procedure discussed in
Section 4.6 successfully overcame this difficulty. Case (e) was also the
onlyone for which the larger p was important in stabilizing progress from

the starting point to the solution.
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6.3. Problem 5.10 (Wright No. 9)

Again the Newton strategy and the Lagrangian algorithm with ¢ = 0
failed to converge. Results for the Lagrangian algorithm with o = 10

and p = 100 are shown in Table 6.3.

Starting point (a) (b)

p 100 : 10 100 10
Major itns 12 g 9 5 1 19
Total itns 92 ! 71 32 201
Functions 183 i 146 61 386
Solution 5?(1); x*(1) | x*(2)} x*(3)

Table 6.3. Results for Test Problem 5.10

A value of p =10 1is almost too low for starting point (b), the
subproblem solutions changing radically as the& did for o = 0, but finally
converging to a new local optimum, x*(3) = (-.07427, -3.69170, 2.48792,
0.37693, 0.18446)T.

In general the results for these last two problems are inferior to
those obtained by Murray and Wright [12], [26] with their trajectory
algorithms, in terms of total function evaluations. However, the difference

is less than a factor of 4 in all cases, and averaged 2.2 over the seven

starting points.
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6.4. Problem 5.11 (Optimal Control)

Despite the large size of this problem both the Newton strategv and

tue Lagrangian algorithm with p = 0 converged rapidly.

Method N L (p = 0)
Major itns 6 6
Total itns 254 247
Functions 213 203
Time (secs) 10.55 11.56

Table 6.4. Results for Test Problem 5.11

Recall that procedure N evaluates the constraint functions only once per
major iteration (in this case 6 times compared to 203 times for procedure L).
If f(x) were more costly to compute,the time advantage would be that much
greater. The Lagrangian algorithm displayed insensitivity to nonzero

values of p 1in the range 0.01-10.0, taking the same iterations and cal-

culations as shown in Table 6.4.
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6.5. Problem 5.12 (Economic Growth)

Although this is also a convex problem the Newton strategy led to
oscillation and no convergence. The Lagrangian algorithm did converge
rapidly with o = 0. Without the upper bounds I < (1.04)%0 it required

11 major iterations, 355 minor iterations, 859 function calculations and

34.3 seconds, and there were 99 superbasic varilables at the optimal solution.

However when these bounds were imposed, the optimal number of superbasics
was only 25 and convergence was obtained in 7 major iterations, 183 minor
iterations, 497 function calculations and 11.9 seconds. This illustrates
the gains that are made when the presence of constraints reduces the di-
mensionality of the optimal subspace.

As an experiment on the effect of p on the rate of convergence the
problem was solved several times with different values of ¢ 1in the range
10-4 < p £1.0. (The tolerance €. for dropping p was set to zero,

thus forcing p to stay constant for each run.) The results are shown in

Figure 1. This is a plot of minor iterations versus log of the constraint
violation or "row error," 10810” £(x) + Ay - El”m:, immediately following
relinearization. The dots represent the end of each major iteration.
Initially these occur every 40 iterations (the MINOR ITERATIONS limit) but
later subproblems were solved accurately before the limit was reached. In
fact the number of minor iterations reduces rapidly to only one or two per
subproblem as convergence is approached. This behavior was also observed
in all of the preceding examples.

It can be seen that higher values of p give lower row errors at
the end of the first major iteration (as we would expect), but they lead
to consistently slower convergence. It is interesting to note that rapid
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Solution of problem 5.12 using various values for the penalty
parameter p. The constraint violation, 10810”£(1‘) +ay-boll_,
is plotted against minor iteration number. Dots signify

the end of each major iteration.
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convergence does occur ultimately in all cases (except for p = 1.0

which was terminated after 500 iterations). However this is not until the
correct active constraints have been identified, by which time X is
very close to the optimum and the penalty term is having a negligible
effect on the Lagrangian and its reduced gradient.

These results confirm that the benefit of Robinson's proof of
quadratic convergence for the case p = 0 cannot be realized unless o
is actually reduced to zero as soon as precautions allow.

The dotted line in Figure 1 shows the result for p = 1.0 (the
worst case) with ec set to 0.01, allowing p to be reset to zero at the
start of major iteration 3. (Note that on the highly nonlinear examples 5.9
and 5.10, the same value of ec ensured that p was not set to zero until
a near optimum point was reached. This was the desired effect since the
multiplier estimates Ak were changing radically in the early major
iterations.)

It will be seen in Figure 1 that the row error increases sharply
once p 1s reset to zero. This is consistent with the algorithm suddenly
being free to take a large step. We could therefore regard the first two
major iterations as having served to verify that the problem is only

mildly nonlinear.

7. CONCLUSIONS
Many real-life optimization problems originate as linear programming
models that are not quite linear; i.e. they contain simple, differentiable «

functions in the constraints and objective, but otherwise the constraint set
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is large, sparse and linear. For such problems the Jacobian matrix is aliso
likely to be sparse, and the strategy of solving a sequence of linearly con-
strained subproblems has many advantages. This is clear from the results
obtained for the larger test problems above.

For convex problems the Lagrangian term in the objective of the sub-
problems is usually necessary to ensure convergence. The Newton strategy
performed adequately without it on some occasions, but in general the saving
in run time will seldom be substantial.

For non-convex problems, both the Lagrangian and the penalty term
are clearlv useful but the actual choice of the penalty parameter
remains a critical decision for the user. 1In practice, optimization problems
are often solved repeatedly on a production basis. In this situation it is
worthwhile experimenting with different values of the parameters and toler-
ances (and perhaps with the Newton strategy). However the case of an isolated
problem with unknown characteristics is no less impurtant. A conservative
(high) value of p 1s then virtually mandatory. One of our aims has been
to minimize the risk of subsequent slow convergence by determining an
opportune time to reduce p to zero. The analysis in Section 3.4 has
suggested a practical procedure for achieving this aim. 1In particular,
the "radius of convergence" tolerance €. (applied to both the constraint
violation and the relative chauge in the estimates of 1) allows early
removal of p 1in moderately nonlinear cases but otherwise retains it until
convergence to a local solution is imminent.

The results reported here should provide a benchmark for measuring
the performance of other algorithms and their implementations. Clearly no
single algorithm can be expected to perform uniformly better than all others
in such a diverse field as nonlinearly constrained optimization. As it
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happens, MINOS/AUGMENTED has proved to be reascnably efficient on small,
highly nonlinear problems, but more importantly, it represents an
advance in the development of general-purpose software for large-scale

optimization.
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